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The study of toroidal vortex ring motion is of interest primarily because at certain 
conditions the initially spherical gas bubble takes the form of a toroidal bubble as a result 
of the formation of a central cumulative jet. 

The expansion of a toroidal gas bubble was studied in [I] for a compressible fluid. Re- 
suits of this study make it possible to determine the maximum radius of the bubble, but in 
[I] it was assumed that the circular axis of the bubble is stationary. Furthermore, in a 
number of cases the expansion of the toroidal bubble is accompanied by its motion in the ver- 
tical and horizontal directions. 

Consider the dynamics of a toroidal bubble, taking into account the displacement of its 
circular axis~ Let the toroidal gas bubble, with radius of the circular axis a and radius 
of the cross section R0, be initially in the horizontal plane in an unbounded incompressible 
fluid of density 0- The fluid pressure inside the bubble is p0, the fluid pressure at the 
depth of location of the bubble is p~, and the bubble has a vertical velocity V. The dynamics 
of the bubble includes two basic components: the pulsating motion near the circular axis due 
to the pressure difference P0 -- p~ and the motion in the vertical direction due to the pres- 
ence of vertical velocity and the buoyancy force. 

In order to derive the equations of motion of the bubble we determine the velocity po- 
tential caused by the pulsating and buoyant torus, i.e., find the harmonic function outside 
the torus whose large and small radii are, respectively, a and R. 

Starting from multipole series for the potential 
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where ~D0= g ]p(zl+a)~+z ~ is the potential_ of a single ring source; K is the complete elliptic 

V "  4az 1 , integral of the first kind; k = (zl+a)~+z~ is the modulus of the elliptic integral; zl, z2 

are the cylindrical coordinates system whose origin is in the plane of the circular axis of 
the torus (zl is the radial coordinate and z2 is the axial coordinate); Do, Di, and Dij are 
the multipole moments. 

Consider polar coordinates z I = a + r cos e, z2 = r sin 0. In order to compute the poten- 
tial (I), the elliptic integrals are replaced by their asymptotes, which are valid for r/a << 
I and expressed through harmonic functions [2]. The potential is expressed in the form ~ = 
~(+) + ~(-), where ~(+) is an even function in e and represents the potential of the pulsa- 
ting motion of the bubble; ~(-) is an odd function in 0 and describes the potential of the 
forward motion of the torus. In order to determine the potential ~(+) let D i = R2di/a 2, 
Dij = R4dij/a4; to compute ~(-) put. D i'3 =. R2di'/~ 2 , j  . Di" kj = R4dijk/a ~ . The quantities Do, 
di, dij , and dij k are found from klnematlc conditions at the boundary of the torus: 

I 0(D(_) 00(+) -- h ,  = Z sin O, 
Or r=a  ~ r=R 

where Z is the vertical distance of the bubble from its initial condition; here and in what 
follows, the dot over a symbol denotes differentiation in time. 

Limiting ourselves to terms of the order R2/a 2, we ge t 

dO (+) = - -  B R  A + ( 2 A  - -  3) i--~a, a + ~ a ~ ( A . - -  2 ) (2A  - -  i) ( 2 )  
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where A = 1 ; A, = A Ir=n = In ~-. 
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On the basis of Eqs. (2) and (3), 
be expressed in the following manner: 

(3) 

the expression for the kinetic energy of the fluid may 
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The expression for the potential energy of the System fluid-bubble has the form 

=--X---~T_tp0 + 2~aR~(p~- -pgZ) ,  

where  ~ i s  t he  a d i a b a t i c  i ndex  of  the  gas i n s i d e  the  b u b b l e .  D i f f e r e n t i a t i n g  the  e n e r g y  
b a l a n c e  e q u a t i o n  T + ~ = c o n s t  w i t h  r e s p e c t  to  t ime and add ing  the  e q u a t i o n  f o r  t h e  momentum 
in the vertical direction to the result [in computing the added mass of the fluid we take into 
account the second term in (4)], we obtain a system of equations describing the motion of the 
toroidal bubble: 

P~ ~,Z P~ (~~ TM ] R ( 2 R R A n  

+ 2 i ~  gZ R - . ~  - - + .=-44 (2A.- -3)  n Z  + (~ i~  - -  5) n ~  + 2 (~A~--  8 h ,  + 
16a" 

+ t) RRi~ + 4 (4Ai  - -  10A. + 3) ;~ ]  = 0; 

( 2 / ~ Z + B Z )  I + ~ ( 4 A .  " 5) + ~ a  2 ( 4 A . - 7 )  R Z = g R .  

Introducing nondimensional variables R'  = R/Ro, Z '=  Z/Ho, t' = ~o 

formations, Eqs. 
gration: 

(5) 

(6) 

and after the trans- 

(5) and (6) can be written in a form that is convenient for numerical inte- 

U = ~  6R + 2 + ~ Z - - u 2 A R - -  i i - -  

~20A~--sAf+~)] R2 1 
8a 2 j 

Y = ~ 2UVpt i6a 2/t [(4An --  5) [~R + 2 (4AR --  7) uv], t? = u, Z = v; 

R = t , Z = O ,  u = e , v = o :  for t = O .  

(7) 

In Eq. (7): ~= flgR~ 6= Po ~= V U p---~, p--~, ]/rp~/9, e= F ~ '  whereU is the initial value of R. Here 

and in what follows primes with nondimensional terms are omitted. Results for the expansion 
of a toroidal bubble with a0 = 500, 5000, and 50,000 (lines I-3) are shown in Fig. I, where 

= ~ = 0, B = 10 -3 , 6 = 104 , e = I, • = 4/3. 

Consider the collapse of the empty bubble ~ = 0 when $ ~ I in the approximation of a 
slender torus: In Eqs. (5) and (6) terms of the order R2/~ 2 are neglected. Then the basic 
equations could be reduced to energy and momentum equations 

tt 2 R2An + y +1  = X  + l, R2Z oz. (8) 
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It follows from (8) that 

h =  t I / ( i -  R~)(R~--R~) (9) 
V ~ .  R ~ ' 

where  R, = a / r  i s  t h e  minimum r a d i u s  o f  t h e  b u b b l e  c o r r e s p o n d i n g  to  t h e  c o n d i t i o n  R = 0. 
The minus sign for the square root is chosen from the condition for the consideration of the 
stage of collapse. Note that when R = R, the maximum vertical speed of the bubble is at- 
tained, which is determined from the equation maxlZ] = /~/R,. Equation (9) leads to the 
quadrature 

1 

. I/(I --R~)(,~--R$) 

For an approximate computation of the integral we replace the variable of integration within 
the logarithmic sign by unity. Then we get the relation 

t = V l n  8aE(~, k4), Z a V ~  8aF(T, k+), (10) 

where  F and E a r e  i n c o m p l e t e  e l l i p t i c  i n t e g r a l s  o f  t h e  f i r s t  and s econd  k i n d ,  r e s p e c t i v e l y ;  

�9 , _ / t  - ~  k§  =aros n 

Results of the calculations according to formula (lO) are shown in Fig. 2, where depen- 
dence R is given and the introduced vertical displacement of the bubble Z = Zr 8a derived 
from introduced time t------t/2/in8a when a-----1.25; 1.0; 0.75; 0.5; 0.25; in the case of 0 (lines 
1-6), B=6-----c=~ =0, 

Equations for the collapse time and for the corresponding vertical advance follow from 
EN. (10) : 

t ,  = Y l--ff-~aE (k+), Z ,  = a ]/cfffn 8aK (k+), ( 1 ] ) 

where E is the complete elliptic integral of the second kind. 

Results obtained from Eqs. (10) and (11) were compared with computed results from the 
solution to Eq. (7) assuming a slender torus; as a result it is established that the error 
in approximate analytical expressions does not exceed 5%. 

When ~ = O, the equation for the collapse of an empty, stationary bubble, assuming a 
slender torus, agrees with the corresponding equation from [I]: 

R R A  R q~ (A R - -  t l 2 ) R  ~ q- I = 0. 

An approximate solution to this equation (A R § ~ has the form 

R = 1 / t  - -  t 2 / ln  8a .  
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The formation of a cumulative jet can lead to the formation of circulatory motion around 
the circular axis of the torus and to the appearance of the horizontal velocity a = w. 

The presence of circulation F leads to the appearance of Zhukovskii lift force on the 
bubble with vertical and horizontal components. In this case, in addition to the pulsatory 
and vertical motions of the bubble there could be a displacement of its circular axis in the 
horizontal plane. The problem of the motion of the toroidal bubble in the presence of cir- 
culation approaches the problem of the vortex ring lift considered in [3] without pulsatory 
motion. 

Consider the equations for kinetic energy, momentum, and velocity of the vortex ring 
given in [4] assuming a slender torus. The justification for using these relations with 
these assumptions is given in [5]. Then the energy equation may be written in the following 
manner: 

i ~ 6 a R 2 ( 1 - ~ )  

w h e r e  u = F / ( v R o ~ p ~ / p ) .  

Equations for the vertical and horizontal momentum of the bubble have the form 

(an2@ = ~aR~ -- ?=w, (anew)" = ?av. 

The right-hand side of these equations represent buoyancy and Zhukovskii lift forces acting 
on the bubble. The first equation for ~ = 0 has an integral ~R2v = (I/2)y(a~ -- a 2) + ~0. 

After differentiating of Eq. (12) with respect to time and performing some transforma- 
tions, the basic system of equations describing the dynamics of the toroidal bubble in the 
presence of circulation is reduced to the form 

v2 + 2 il 
J 

1 
+ ~? 4 ~ a  (AR - -  t/4) + 4aR--- r - -  

2 ~  ~ W " ~ 2 ~  ~2 R u, (13)  
V ~  R a R2 , W-- R a '  

2 = V + 4 u ~ ( Z , - - I / 4 ) ,  a = w .  

When t = 0 R = I, a = a0, Z = O, R = s, Z = ~, a = ~, where ~ = W/dp~/p, W is the initial 
value of a. 

Results of numerical solution to the problem of the motion of the bubble under the action 
of gaseous products contained in it are given in Figs. 3-5 for different values of p and y 
(a0 = 10 ~, B = I0 -3, B = 104, ~ = I, • = 4/3): in Fig. 3 (~ = y = 0) lines I-4 denote ~ = 
300; 200; I00; and 0; in Fig. 4 (~ = ~ = O) lines I-4 denote y = 200; 150; I00; and O; in 
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Fig. 5 Aa = a -- a0, = = p = O, y = 150. Computations show that when y ~ 0, the displacement 
of the circular axis may have an oscillatory character. 

When B = Y = 0, Eq. (13) may be written as a law of conservation of energy and momentum: 

ao5 [aR2 aX-l(aR:)~-x],  

�9 (14) 

aR2a : &ao, aR~Z = aao, 

where RA = / ( a  2 + ~ z ) / 2 .  The s i g n s  + and -- in  f r o n t  of  the  r a d i c a l  c o r r e s p o n d  to  e x p a n s i o n  
and c o l l a p s e  o f  t he  b u b b l e .  The l a s t  two e q u a t i o n s  (14) l e a d  to  an e x p l i c i t  r e l a t i o n  Z = 
a(a  -- a o ) / V  which makes i t  p o s s i b l e  to  e l i m i n a t e  the  e q u a t i o n  f o r  Z f rom f u r t h e r  a n a l y s i s .  
E q u a t i n g  t he  e x p r e s s i o n  w i t h i n  t he  r a d i c a l  to  z e r o ,  we o b t a i n  a r e l a t i o n  be tween  t he  p a r a m -  
e t e r s  of  the  p r o b l e m  when the  b u b b l e  r a d i u s  has  e x t r e m a l  v a l u e s .  

I n  t he  c a s e  o f  the  c o l l a p s e  of  the  b u b b l e  (6 = 0, R < 1) the  f i r s t  two e q u a t i o n s  of  the  
s y s t e m  (14) d e s c r i b e  the  m o t i o n  of  the  b u b b l e  be tween  the  s t a t e s  a0 and a0R~. Yf ~ > 0,  R A > 
I then a0 ~aR z aoR~; if ~ < 0, RA < I then a0R~ ~ aR 2 < a0. When minimum radius R A is 
attained, the bubble size and speed are determined from 

a = R ~ '  = 
R = R  A 

Computed r e s u l t s  f o r  the  s y s t e m  (13) in  the  c a s e  o f  the  c o l l a p s e  of  t he  empty b u b b l e  a r e  
g iven  i n F i g .  6 w h e r e a = B = y  = 6 = ~ = 0 ,  a0 = 1 0 4 a n d l i n e s l - 5 e o r r e s p o n d t o  ~ = 1 . 2 5 , - - 1 , - 0 . 7 5 ,  

- -0 .5 ,  and - -0 .25 .  
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INVESTIGATION OF HEAT TRANSFER IN SEPARATED REGIONS IN A 

SUPERSONIC LAVAL NOZZLE 

E. G. Zaulichnyi and V. M. Trofimov UDC 536~24:532.54 

I. This paper describes experiments and an approximate method to compute heat transfer 
at the wall in supersonic flow with separation in the presence of a step-cavity profile of the 
divergent part of the Laval nozzle. Tests were conducted on a horizontal jet facility in 
which a plane nozzle with cavities (Fig. la) was mounted. Local heat transfer and pressure 
coefficients at the nozzle walls, including the separate region, were measured. Special thin 
film gauges [I] were used to measure heat transfer coefficients under complex flow conditions. 
The flow parameters were as follows: stagnation temperature To = 250-270~ total pressure 
P0 = (9-0-12.5)'I 05 Pa, and Reynolds number based on the throat section dimension, Re = 6-106 . 
Measurements were made on three models of the nozzle with Mach numbers at the separation point 
at the edge of the cavity: 1.90, 2.28, and 2.61, respectively. A schematic diagram of the 
cavity is shown in Fig. la. The length of the horizontal wall of the cavity had the follow- 
ing values: L = 0, 14, 27, 47, and 60 mm. The height of the wall h = 12 mm was kept constant 
in all the tests and was appreciably more than the boundary layer thickness ahead of separa- 
tion (~i/h = 0.13-0.17). 
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